the bond breakage, and only four out of the forty-eight T-O bonds or four out of twenty-four T-O-T angles are broken. Each 5- or 7-membered ring has only one new T-O bond generated during the transformation.

Change of bond distances and angles

After the transformation, the density decreases from 2.395 to 2.365 g.cm⁻³. This is reflected in a general increase of the bond lengths in the keatite phase (Li & Peacor, 1968; Li, 1968). Also, after the transformation, both the (Si, Al)- and Li-tetrahedra become slightly more distorted, as is shown by a general increase in the range of angles in the keatite phase. During the transformation, the T-O-T angle changes from 151.6° to 143.6°, 150.7° and 154.0°. It was found by this study that the angles of 143.6° and 154.0° are the new T-O-T angles generated during the transformation. However, these two new angles not only show up at the new (Si, Al)-tetrahedra linkage but also appear with the left-over high-quartz linkage of the keatite phase. The remaining T-O-T angle of 150.7° which has the minimum deviation from the original high-quartz angle of 151.6° is the direct descendant from the high-quartz phase.

Reasons for transformation

Some possible reasons for the reconstructive transformation between the high-quartz and the keatite phases were reported (Li, 1970). They will not be repeated here.

The writer would like to express his gratitude to Professor D. R. Peacor and his colleagues, Drs M. A. Conrad, G. M. Muchow, and G. F. Neilson for review-

Fig. 7. Illustration of the change of bonding during transformation (open circles designate oxygen locations which are somewhat displaced in this high-quartz projection for sake of clarity).

ing the manuscript. Special thanks are given to Professor Werner Baur for his constructive suggestions in condensing the manuscript.

References

EVANS, D. L. (1969). Acta Cryst. A25, S 234.
LI, CHI-TANG (1968). Z. Kristallogr. 127, 327.
LI, CHI-TANG (1970). Z. Kristallogr. 132, 118.
LI, CHI-TANG & PEACOR, D. R. (1968). Z. Kristallogr. 126, 46.

Acta Cryst. (1971). B27, 1140

Die Strukturen einiger *p*-Halogenphenyl-diphenyl-phosphinchalkogene. I. *p*-Bromphenyl-diphenyl-phosphinoxid

VON W. DREISSIG UND K. PLIETH

Institut für Kristallographie der Freien Universität, Berlin-Dahlem, Deutschland

(Eingegangen am 16. März 1970)

p-Bromophenyldiphenylphosphine oxide is monoclinic, space group $P2_1/n$, with lattice constants a = 16.933, b = 14.912, c = 6.257 Å, $\beta = 95.30^{\circ}$. Three-dimensional intensity data were collected with an automatic 4-circle diffractometer. The structure was determined by Patterson synthesis applying the heavy-atom method. By least-squares refinement, including the 14 H atoms, the R value decreased to 6.4%.

Experimente

p-Bromphenyl-diphenyl-phosphinoxid

bildet nach Goetz, Nerdel & Wiechtel (1963) farblose Kristalle mit linealförmigem Habitus, die stark zur Verzwillingung neigen. Aus einer 4:1-Lösung von Äthylalkohol und Petroläther konnten nach vielen Kristallisationsversuchen genügend grosse unverzwillingte Kristalle erhalten werden. Die Gitterkon-

5
1
ŭ
ar
5
20
'n
6
1
N,

6
Ĕ
ē
<u>_</u>
Ľ
L

; Parameterwertes.
des
Stellen
letzten
die
auf
bezogen
an.
e Standardabweichungen
, di
aha
K lammern c
hlar
7.9
Ë

		-0,0017(1) 0.0001(2)	0,0001 (5)	0,0006 (6)	0,0022 (/)	0,0026 (8)	0 0014 (7)	0.0018 (7)	0,0009 (6)	0,0008 (8)	0,001 (1)	0,000 (1)	- 0,0001 (9)	-0,0011(8)	-0,0013(7)	(6) 10000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.00000 - 0.00000 - 0.0000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.0000- 0.0000 - 0.0000 - 0.0000 - 0.000000 - 0.0000000 - 0.00	-0.001(1)	0,0008 (8)	0,0007 (8)													
	rwertes.	-0,0051 (1) 0.0014 (1)	0,0027 (5)	0,0004 (5)	-0.0013(6)	-0,0025(/)	-0.0000 (7)	-0.0002 (7)	0,0000 (5)	- 0,0007 (7)	-0,0029 (8)	0,0007 (8)	0,0034 (8)	0,0001 (6)	0,0010 (6)	0,0033 (/)	-0.0016(9)	-0.0011(7)	0,0004 (7)													
	llen des Paramete	-0,00035(4) -0,00025(7)	- 0,0007 (3)	0,0001 (2)	-0,0004 (3)	-0,0004(3)	0,0004 (3)	-0.0006(3)	- 0,0004 (2)	-0,0005 (3)	-0,0005 (3)	0,0009 (4)	0,0007 (4)	0,0001 (3)	-0,0002 (3)	(3) (1000) - (1000)	0,0004 (4)	-0.0004(3)	-0,0001 (3)													
	uuf die letzten Stel	0,0450 (3)	0,015 (1)	0,023 (2)	0,025 (2)	0,031(2)	(7) (7) (7)	0,024 (2)	0.021(2)	0,023 (2)	0,038 (3)	0,042 (3)	0,033 (3)	0,028 (2)	0,025 (2)	0,032 (2)	0,048 (3)	0,042 (3)	0,031 (2)													
Atomparameter	gen an, bezogen a	0,00584 (5)	0,0077 (4)	0,0046 (3)	0,0056 (4)	0,0046 (4)	0,0048 (4)	0,0052 (4)	0.0043 (3)	0.0061 (4)	0,0087 (6)	0,0114 (7)	0,0079 (6)	0,0061 (4)	0,0046 (3)	0,0061 (5)	(c) 80000	0,0054 (4)	0,0046 (4)													
Tabelle 1. A	ndardabweichung	0,00617 (4)	0.0062 (3)	0,0033 (3)	0,0043 (3)	0,0052 (4)	0,0034 (3)	0,0048 (3)	0,0037 (3)	0.0049 (3)	0.0044 (3)	0,0036 (3)	0,0048 (4)	0,0042 (3)	0,0036 (3)	0,0048 (3)	0,0053 (4)	0,0053 (4)	0,0047 (3)	a a	a i	5,9 (2.0) A ²	(1,1) U,U	3,6 (1,2)	2,7 (1,0)	4,7 (1,5)	4,3(1,3)	(c,2) c,1 4.3 (1.4)	3,2 (1,1)	2,4(1,0)	7,6 (2,5)	2,0 (0,9)
	hern geben die Sta	0,7817 (2)	0.0341 (7)	0,417 (1)	0,310 (1)	0,417 (1)	0,629 (1)	0,738 (1)	(1) 550,0	0 151 (1)	0.178(1)	0.366(2)	0.536 (1)	0,512 (1)	0,388 (1)	0,274 (1)	0,347 (2)	(1) 1920	0,584 (1)	ľ	N	0,166(15)	0,200 (12)	0.705 (12)	0,054 (11)	0,049 (14)	0,388 (13)	0,0/1 (10)	0,155 (12)	0,252 (11)	0,583 (17)	0,62/ (14) 0,781 (11)
	Zahlen in Klamn	0,6155 (1)	0,2928 (1)	0.3790 (5)	0,4598 (5)	0,5299 (5)	0,5196 (5)	0,4398(5)	(5) 10, 5, 0	(.) 0.000	0, 2948 (7)	0.3245 (7)	0.3469 (6)	0.3388 (6)	0,1854 (5)	0,1339 (6)	0,0513 (6)	0,0203(6)	0.1550(5)		Y	0,478(6)	(c) c/c,0	0.316(5)	0,282 (5)	0,277 (6)	0,294(6)	0,348 (/) 0 351 (6)	0,163 (5)	0,007 (5)	-0,044 (7)	0,195 (6) 0,053 (5)
	Die	0,4527 (1)	0,2650 (1)	0.3205(4)	0,3320 (4)	0,3725 (5)	0,4009 (4)	0,3907 (5)	(5) 2004 (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	0,102/ (4)	(2) 0.0100	0.0003 (5)	0.0581 (5)	0.1376 (5)	0,2958 (4)	0,3452 (5)	0,3711 (5)	0,3474(5)	0,2727 (5)		x	0,325 (5)	(+) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	0,410 ()) 0 333 (5)	0,125 (4)	-0,007 (5)	-0.057(5)	0,049 (6) 0 175 (5)	0.359(4)	0,395 (4)	0,341 (6)	0,224 (5) 0,295 (4)
		Br(1)			C(2)	C(3)	C(4)	C(5)						C(12)	C(13)	C(14)	C(15)	C(16)		(01)0		H(2)	H(3)	H(6) H(6)	H(8)	H(9)	H(10)	H(11) H(11)	H(14)	H(15)	H(16)	H(17) H(18)

EINIGE *p*-HALOGENPHENYL-DIPHENYL-PHOSPHINCHALKOGENE. I

Tabelle 2. Beobachtete und berechnete Strukturfaktoren

Es ist jeweils H, $10 \times |F_0|$ und $10 \times F_c$ aufgeführt. Ein * kennzeichnet unbeobachtete Reflexe.

- 56.0 2 31.0 2 31.0 3 32.7 4 32.7 5 32.7 4 32.7 4 32.7 4 32.7 4 32.7 12 12.7 12 12.7 12 12.7 12 12.7 12 12.7 12 12.7 12 12.7 12 12.7 12 12.7 13 12.7 14 12.7 15 12.6 10 12.7 11 12.7 12 12.8 13 12.7 13 12.7 14 13.7 15 12.7 16 12.7 17 14.7 18 12.7 19 12.1 19 12.1 <th></th> <th>7 134 139 7 134 139 1 229 1 229 1 229 1 229 2 23 1 2 23 3 37 3 39 3 39 3 49 3 12 2 49 3 39 3 39 3 49 4 49 1 137 4 49 4 49 1 2 49 3 147 4 49 4 49 1 2 49 4 49 1 137 4 49 4 49 1 2 49 2 49</th> <th>$\begin{array}{c} \bullet & 236 & -2246 \\ \bullet & 936 & 039 \\ 10 & 3891 & -950 \\ 11 & 111 & -118 \\ 12 & 116 & -126 \\ 13 & 104 & -186 \\ 13 & 105 & 156 \\ 14 & 196 & -196 \\ 15 & 105 & -196 \\ 15 & 40 & -230 \\ 16 & 72 & 61 \\ 17 & 40 & -37 \\ 18 & 72 & 61 \\ 18 & 72 & 61 \\ 19 & 72 & 61 \\ 10 & 72 & 61 \\ 10 & 72 & 72 \\ 11 & 108 & -107 \\ 11 & 108 & -108 \\ 10 & 77 & 208 \\ 10 & 2777 & 208 \\ 10 & 2777$</th> <th>$\begin{array}{c} -16 & -13 & -5 & -42 & -5 \\ -13 & -45 & -54 & -$</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>• 324 94 • 325 95 • 325 95 • 10 10 10 10 10 • 10 10 10 10 • 10 10 10 • 10 10 10 • 10 10</th> <th>-1545-17-14-14-14-14-14-14-14-14-14-14-14-14-14-</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th>		7 134 139 7 134 139 1 229 1 229 1 229 1 229 2 23 1 2 23 3 37 3 39 3 39 3 49 3 12 2 49 3 39 3 39 3 49 4 49 1 137 4 49 4 49 1 2 49 3 147 4 49 4 49 1 2 49 4 49 1 137 4 49 4 49 1 2 49 2 49	$\begin{array}{c} \bullet & 236 & -2246 \\ \bullet & 936 & 039 \\ 10 & 3891 & -950 \\ 11 & 111 & -118 \\ 12 & 116 & -126 \\ 13 & 104 & -186 \\ 13 & 105 & 156 \\ 14 & 196 & -196 \\ 15 & 105 & -196 \\ 15 & 40 & -230 \\ 16 & 72 & 61 \\ 17 & 40 & -37 \\ 18 & 72 & 61 \\ 18 & 72 & 61 \\ 19 & 72 & 61 \\ 19 & 72 & 61 \\ 19 & 72 & 61 \\ 19 & 72 & 61 \\ 19 & 72 & 61 \\ 19 & 72 & 61 \\ 19 & 72 & 61 \\ 19 & 72 & 61 \\ 10 & 72 & 61 \\ 10 & 72 & 72 \\ 11 & 108 & -107 \\ 11 & 108 & -107 \\ 11 & 108 & -107 \\ 11 & 108 & -107 \\ 11 & 108 & -107 \\ 11 & 108 & -107 \\ 11 & 108 & -107 \\ 11 & 108 & -108 \\ 10 & 77 & 208 \\ 10 & 77 & 208 \\ 10 & 77 & 208 \\ 10 & 77 & 208 \\ 10 & 77 & 208 \\ 10 & 77 & 208 \\ 10 & 77 & 208 \\ 10 & 2777$	$\begin{array}{c} -16 & -13 & -5 & -42 & -5 \\ -13 & -45 & -54 & -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 324 94 • 325 95 • 325 95 • 10 10 10 10 10 • 10 10 10 10 • 10 10 10 • 10 10 10 • 10 10	-1545-17-14-14-14-14-14-14-14-14-14-14-14-14-14-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10 21 -13 10 21 -13 11 21 17 21 12 207 243 3 324 33 324 -13 324 -13 33 324 -14 -14 -14 33 324 -14 -14 -14 4 1947 -183 -14 -14 12 107 241 -13 -14 12 107 243 -14 -14 13 326 -223 -223 -223 6 2193 245 15 15 11 12 10 14 164 16 13 127 13 15 15 17 17 13 13 127 13 14 16 16 16 17 13 14 15 15 15 17 15 17 <	11 12 12 12 11 12 12 12 12 12 12 12 12 12 13 12 12 12 12 14 77 7 12 12 14 77 7 12 12 15 7 12 12 12 16 7 12 12 12 17 12 12 12 12 18 12 12 12 12 19 12 12 12 12 19 12 12 12 12 10 12 12 12 12 12 12 12 12 12 12 13 14 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12<	-19 33 55 -113 24 -13 25 -13 24 -14 23 -14 23 -15 24 -14 23 -14 23 -15 24 -15 24 -16 23 -16 23 -17 23 -1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 100 - 112 - 100 - 122 - 100 - 122 - 100 - 122 - 100 - 122 - 125 - 125			10 12 -22 13 2 -24 -45 -10 41 -45 -21 -10 12 -34 -15 -10 12 -34 -15 -11 10 -21 -14 -12 14 -35 -17 10 14 -32 -34 -11 14 -4 -12 14 -35 -12 14 -11 14 -32 -34 -12 14 -32 -4 15 15 -7 14 -12 14 -4 -4 14 -32 -4 46 -4 -13 14 -33 -31 34 -13 14 -33 -33 -31 -13 14 -33 -31 -33 -13 14 -33 -33 -31 15 <		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113 15 15 13 15 15 13 15 15 13 15 15 13 15 15 13 15 15 13 15 15 13 15 15 13 15 15 13 15 15 13 15 15 13 15 15 13 15 15 13 15 15 15 13 15 15 15 15 15 15 15 15 15 15 15 15 15	11 10 10 10 10 11 10 10 10 10 10 11 10 10 10 10 10 11 10 10 10 10 10 11 10 10 10 10 10 11 10 10 10 10 10 11 10 10 10 10 10 11 10 10 10 10 10 12 10 10 10 10 10 12 10 10 10 10 10 13 10 10 10 10 10 14 10 10 10 10 10 11 10 10 10 10 10 11 10 10 10 10 10 11 10 10 10 10 <	$\begin{array}{c} -\frac{2}{7} & \frac{2}{6} & \frac{2}{6} & \frac{2}{7} \\ 1247 & -1268 \\ 2417 & -1268 \\ 24124 & -1264 \\ -1268 & -1264 \\ 2127 & -1264 \\ 2128 & -1264 \\ 2128 & -1264 \\ 2128 & -127 \\ 2128 & -127 \\ 2128 & -128 \\ -$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1142

Tabelle 2 (Fort.)

								t ungfaugtenenen fauftenenen annen anterenenen indele mannen alledet anar annen alledet anar annen alledet man de ungfaugtangenenen fauftenenen generenen fauftenenen fauftenenen genere fauttenenenen fauttenenenen fauttenen des indeledet in anseinenen interenenen aftenenenen anterenenen interenenenenen fauttenenen fauttenenenen fauttenenenenenenenenenenenenenenenenenene	aussessen aussisten aussisten and aussisten aussisten and aussessen aussisten a	Lasteli interidie and and statelister after and the second shall alst and and the second and the second shall and a second shall and a second stateli and a second stateli and a second stateli and a second statelist and a second statelistic and a second state as
--	--	--	--	--	--	--	--	---	---	---

Tabelle 2 (Fort.)

1+2027 1-227 1-227	0 170 17 -7 131 -05 1 130 -132 -0 170 119	5 59 17 -2 40 -18	H+4+7 2 164 -47 3 57 -76	-2 130 -12 -	-5 180 -15 Hafa7
-• 127 -45 -16 56 -16 -7 116 20 -5 22 26 -5 119 -116 -6 219 -16 -1 34 27 -16 46 -21 -1 34 27 -6 269 16 1 77 4 -5 26 64 3 41 15 -4 210 -2 5 47 -17 -2 140 -16 5 47 -17 -2 140 -16 -1 16 124 -1 5 47	2 260 512 -5 216 65 3 62 46 -4 150 -22 4 170 14 -3 150 -22 5 160 -163 -2 16 26 0 130 120 -16 H12,7 1 160 -24 H12,7 1 160 -24 H12,7 1 160 -24 H12,7 2 1 20 -27 -4 47 59 3 30 20 -4 44 -25 4 78 -00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-1 194 12 c 112 -125 1 170 11 - 1 170 11 - 1 170 11 - 1 180 -12 - 1 18 -12 - 1 19 - 12 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

stanten der in der Raumgruppe $P2_1/n$ kristallisierenden Substanz wurden mit einem automatischen Einkristall-Diffraktometer der Firma Siemens bestimmt:

$a = 16,933 \pm 0,008$ Å	$a = 90^{\circ}$
$b = 14,912 \pm 0,008$ Å	$\beta = 95,30 \pm 0,06^{\circ}$
$c = 6,257 \pm 0,003$ Å	$\gamma = 90^{\circ}$
$V = 1573,2 \text{ Å}^3$	$D_{\rm exp} = 1,50 \text{ g.cm}^{-3}$
Z = 4	$D_{ro} = 1.51 \text{ g.cm}^{-3}$
Cu Ka-Strahlung, Ni-Filter.	

In dem Bereich $5^{\circ} \le \theta \le 71^{\circ}$ konnten die Intensitäten von 3052 unabhängigen Reflexen gemessen werden. Von ihnen wiesen 225 eine Intensität auf, die kleiner als der statistische Fehler war. Sie wurden als unbeobachtet eingestuft. Wegen der sehr unterschiedlichen Absorptionsverhältnisse wurden die Reflexintensitäten mit einer für das Vierkreis-Diffraktometer modifizierten Form eines Programms von Burnham & Onken (1964) mit einer Absorptionskorrektur versehen. Die ermittelten Transmissionskoeffizienten lagen zwischen 0,15 und 0,58.

Strukturbestimmung

Mit den so korrigierten Daten wurde eine dreidimensionale Pattersonsynthese gerechnet. Aus den Harkerschnitten konnten die intermolekularen Br-Br- und P-P-Vektoren entnommen werden. Aus der mit den verfeinerten Lagekoordinaten dieser Schweratome gerechneten Fouriersynthese konnten eindeutig die Lagen sämtlicher Kohlenstoff-atome sowie des Sauerstoffatoms ermittelt werden. Der Zuverlässigkeitsindex betrug mit diesem Strukturvorschlag 33%. Isotrope und anisotrope least-squares-Verfeinerungen reduzierten ihn auf R = 8,2%. In der mit diesen Parametern berechneten Differenzsynthese konnten alle 14 Wasserstoffatome entdeckt werden. Abwechselnde Verfeinerungen der Wasserstoffe und der mittleren und schweren Atome verminderten den Zuverlässigkeitsindex schliesslich auf R=6,4%. Die Rechnungen wurden mit eigenen Programmen zum grössten Teil aber mit dem Programmsystem X-ray 63 (Onken, 1965, X-ray 63-Handbuch) durchgeführt.

Ergebnisse

Die Atomkoordinaten und -temperaturfaktoren sind mit ihren Standardabweichungen in Tabelle 1 aufgeführt; die mit diesen Parametern berechneten Strukturamplituden sind den beobachteten in Tabelle 2 gegenübergestellt. Die Bindungslängen und -winkel mit ihren Fehlern sind in Tabelle 3 zusammengestellt; Tabelle 4 schliesslich zeigt sämtliche intermolekularen Abstände unter 3,3 Å. Fig. 1 ist ein Modell des Moleküls einschliesslich der Wasserstoffatome dargestellt.

Tabelle 3. Bindungslängen (Å) und Bindungswinkel (°)

Die Zahlen in Klammern geben die Standardabweichungen an, bezogen auf die letzten Stellen des Parameterwertes.

Br(1) - C(4)	1.891 (7) Å	C(2) - H(2)	0.94 (9) Å
P(1) = O(1)	1,497 (5)	C(3) - H(3)	0.99 (8)
P(1) - C(1)	1,798 (7)	C(5) - H(5)	0.89 (8)
P(1) - C(7)	1,806 (7)	C(6)—H(6)	0.98 (8)
P(1) - C(13)	1,821 (7)	C(8)-H(8)	0.72 (7)
C(1) - C(2)	1,403 (10)	C(9)H(9)	0.98 (8)
C(2) - C(3)	1,389 (11)	C(10) - H(10)	1.13 (8)
C(3) - C(4)	1.377 (11)	C(11) - H(11)	0.87(10)
C(4) - C(5)	1.391 (11)	C(12) - H(12)	0.84 (8)
C(5) - C(6)	1,379 (11)	C(14) - H(14)	0.91 (8)
C(6) - C(1)	1,400 (10)	C(15) - H(15)	1.00 (7)
C(7) - C(8)	1,405 (10)	C(16)-H(16)	1.00 (11)
C(8) - C(9)	1.369 (12)	C(17) - H(17)	0.81 (7)
C(9) - C(10)	1.351 (14)	C(18) - H(18)	1.07 (9)
C(10) - C(11)	1,400 (12)	-()	-, (-)
C(11) - C(12)	1.374 (12)		
C(12) - C(7)	1.382 (10)		
C(13) - C(14)	1,384 (11)		
C(14) - C(15)	1,372 (12)		
C(15) - C(16)	1,391 (14)		
C(16) - C(17)	1,394 (13)		
C(17) - C(18)	1,393 (11)		
C(18)–C(13)	1,396 (11)		
Br(1) - C(4) - C(3)	120,5 (6)°		
Br(1) - C(4) - C(5)	118,1 (5)		
O(1) - P(1) - C(1)	112,7 (3)		
O(1) - P(1) - C(7)	111,3 (3)		
O(1) - P(1) - C(13)	111,9 (3)		
C(1) - P(1) - C(7)	106,3 (3)		
C(1) - P(1) - C(13)	107,6 (3)		
C(7) - P(1) - C(13)	106,7 (3)		
C(6) - C(1) - C(2)	119,4 (6)		
C(1) - C(2) - C(3)	119,9 (7)		
C(2) - C(3) - C(4)	119,7 (7)		
C(3) - C(4) - C(5)	121,4 (7)		
C(4) - C(5) - C(6)	119,2 (7)		
C(5) - C(6) - C(1)	120,5 (7)		
C(12)-C(7)-C(8)	119,0 (7)		
C(7) - C(8) - C(9)	119,7 (7)		
C(8) - C(9) - C(10)	121,2 (8)		
C(9) - C(10) - C(11)	120,1 (8)		
C(10)-C(11)-C(12)	119,5 (8)		
C(11)-C(12)-C(7)	120,6 (7)		
C(18) - C(13) - C(14)	120,4 (7)		
C(13) = C(14) = C(15)	121,0 (8)		
C(14) - C(15) - C(16)	118,7 (8)		
C(15) - C(16) - C(17)	121,6 (8)		
C(10) - C(17) - C(18)	119,0 (8)		
C(17) - C(18) - C(13)	119,4 (7)		

Fig. 1. Molekülgestalt des p-Bromphenyl-diphenyl-phosphinoxids

Tabelle 4. Intermolekulare Abstände

Es sind alle intermolekularen Abstände aufgeführt, die kleiner als 3,3 Å sind.

	,		
Br(1) - H(5)	3,07 Å	H(2) - H(5)	2,59 Å
O(1) - C(6)	3,13	H(2) - H(16)	3,09
O(1) - H(6)	2,39	H(3) - H(8)	3,22
O(1) - H(12)	3,15	H(6) - H(9)	3,28
O(1) - H(16)	3,13	H(6) - H(10)	2,66
O(1) - H(18)	3.01	H(8) - H(11)	2.80
C(2) - H(5)	3,22	H(8) - H(12)	3.19
C(5) - H(2)	3,05	H(8) - H(16)	2.80
C(6) - H(10)	3,25	H(9) - H(11)	2.83
C(7) - H(15)	3,14	H(10) - H(14)	2,38
C(8) - H(3)	3,17	H(11) - H(14)	3.21
C(8) - H(11)	3,20	H(11) - H(16)	2.82
C(8) - H(16)	3,09	H(12) - H(16)	2,55
C(9) - H(11)	3.20	H(12) - H(17)	3.13
C(10) - H(14)	3.17	H(14) - H(17)	2.98
C(11) - H(15)	3.14		,
C(11) - H(16)	3.24		
C(12) - H(8)	3.29		
C(12) - H(15)	3.03		
C(12) - H(16)	3.08		
C(14) - H(9)	3.20		
C(14) - H(10)	3.23		
C(16) - H(2)	3.14		
C(17) - H(2)	3.12		

Der Mittelwert der C-C-Bindungslängen in den Phenylringen beträgt 1,397 Å in Übereinstimmung mit den Literaturwerten von Sutton (1968), ebenso steht der Mittelwert der C-H-Bindungen (1,04 Å) etwa in Übereinstimmung mit diesen Literaturangaben. Die Kohlenstoffatome der Phenylringe sind im Mittel 0,01 Å aus den durch sie gebildeten Phenylringebenen herausgerückt, während die Wasserstoffatome wegen der ungenaueren Lagebestimmung einen mittleren Abstand von 0,08 Å zu den Ebenen besitzen. Die Struktur wird gemeinsam mit der folgenden in Teil II diskutiert.

Herrn Prof. Goetz, TU Berlin, danken wir für die Überlassung der Substanz. Ferner gilt unser Dank der Deutschen Forschungsgemeinschaft für die Bereitstellung des Automatischen Einkristall-Diffraktometers, dem Senator für Wirtschaft und Kredit, Berlin, für die zur Verfügung gestellten Personalmittel, dem Fond der Chemie für die Forschungsmittel und dem Deutschen Rechenzentrum, Darmstadt, für die Durchführung der umfangreichen Rechnungen.

Literatur

- BURNHAM, C. W. & ONKEN, H. H. (1964). Manual for some Computer Programs for X-ray Analysis. Cambridge, Mass.
- GOETZ, H., NERDEL, F. & WIECHEL, K.-H. (1963). *Liebigs* Ann. 665, 1.
- SUTTON, L. E. (1968). *Tables of Interatomic Distances*. London: The Chemical Society.
- X-ray 63-Handbuch (1965). Departments of Chemistry at the Univ. of Washington and Univ. of Maryland,